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A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager’s
region. This theory is referred to as the thermodynamic field theory �TFT�. The aim of this work was to
determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from
equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form
solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general
covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle �TCP�. The
introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as
the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine
universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the
linear �“Onsager”� transport coefficients is also derived. The geometry of the thermodynamic space is non-
Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we
recover the transport equations found by the old theory. Applications of our approach to transport in magneti-
cally confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular
triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas
are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close
to �but, it is not in� a state of local equilibrium. This prevents the transport relations from being linear.
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I. INTRODUCTION

It is well known that the basic theory of dynamical sys-
tems should provide with an algorithm for the determination
of the moments of the particle distribution functions f� �i.e.,
the average values of the power of particle momenta p�,
which are determined by the �fluctuating� fields through the
kinetic equations. In the case of turbulent plasmas, for ex-
ample, the most fundamental approach is the study of the
stochastic kinetic equation coupled to the stochastic Maxwell
equations. Such a self-consistent theory should not require
any arbitrary assumption: it should produce equations of
evolution for all the moments. In practice, however, an exact
solution of this problem is impossible. Indeed, the equations
of evolution of the moments have a hierarchical structure.
The determination of a moment on the order n requires the
knowledge of order n+1. Hence, the equations for the third
moments will involve the fourth moments and so on ad in-
finitum. Because of these difficulties, the fundamental
studies—in spite of their basic importance—cannot easily
produce explicit results that can be directly compared to ex-
periments. In order to obtain such results, one is led to make
compromises. We must introduce additional simplifying as-
sumptions allowing to truncate the hierarchy. As a result, we
obtain a set of dynamical moments equations with a number
of undetermined quantities: the equations are not closed.
These quantities are of four kinds: thermodynamic quantities
�such as temperature, pressure, etc.�, electromagnetic fields,
moments and energy exchanges �such as the collisional fric-
tion forces or the collisional particles heat exchange�, and

fluxes �such as, the particle flux, the heat flux, etc.�. The
dynamics of a thermodynamic system is finally based on the
set of balance equations coupled to a �macroscopic� theory
for the closure relations. Thus, in a macroscopic picture of
thermodynamic systems, the formulation of a theory for the
closure relations plays a fundamental role. The connection
between the macroscopic equation and a microscopic distri-
bution of particles should be established analyzing case by
case �for example, for magnetically confined plasmas, see
Ref. �1� and Sec. II E�.

The most important closure relations are the so-called
transport equations, relating the dissipative fluxes to the
thermodynamic forces that produce them. The latter is re-
lated to the spatial inhomogeneity and is expressed as gradi-
ents of the thermodynamic quantities. The study of these
relations is the object of nonequilibrium thermodynamics.
Close to equilibrium, the transport equations of a thermody-
namic system are provided by the well-known Onsager
theory. Indicating with X� and J� the thermodynamic forces
and fluxes, respectively, the Onsager relations read as

J� = �0��X�, �1�

where �0�� are the transport coefficients. We suppose that all
quantities involved in Eq. �1� are written in dimensionless
form. In this equation, as in the remainder of this paper, the
Einstein summation convention on the repeated indexes is
adopted. Matrix �0�� can be decomposed into a sum of two
matrices, one symmetric and the other skew symmetric,
which we denote with L�� and f0��, respectively. The second
principle of thermodynamics imposes that L�� be a positive-
definite matrix. The most important property of Eq. �1� is
that near equilibrium, the coefficients ��� are independent of
the thermodynamic forces, so that*gsonnino@ulb.ac.be
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��0��

�X� = 0. �2�

The region where Eq. �2� holds is called Onsager’s region or
the linear region. A well-founded microscopic explanation
on the validity of the linear phenomenological laws was de-
veloped by Onsager �2� in 1931. Onsager’s theory is based
on three assumptions: �i� the probability distribution function
for the fluctuations of thermodynamic quantities �tempera-
ture, pressure, degree of advancement of a chemical reaction,
etc.� is a Maxwellian, �ii� fluctuations decay according to a
linear law, and �iii� the principle of the detailed balance �or
the microscopic reversibility� is satisfied. Onsager showed
the equivalence of Eqs. �1� and �2� with the assumptions
�i�–�iii� �assumption �iii� allows deriving the reciprocity re-
lations �0��=�0���. The Onsager theory of fluctuations starts
from the Einstein formula linking the probability of a fluc-
tuation W, with the entropy change �S associated with the
fluctuations from the state of equilibrium,

W = W0 exp��S/kB� . �3�

In Eq. �3�, kB is the Boltzmann’s constant and W0 is a nor-
malization constant that ensures the sum of all probabilities
equals one. The first assumption in the Onsager theory con-
sists in postulating that the entropy variation is a bilinear
expression of fluctuations.

Many important theorems have been demonstrated for
thermodynamic systems in the linear region. Among them,
the most important one is the minimum entropy production
theorem �MEPT� showed by Prigogine �3� in 1947. This
theorem establishes that in the Onsager region, for a−a or
b−b processes �i.e., when the Onsager matrix is symmetric.
See also the definition of a−a and b−b processes reported in
the footnote �4��, a thermodynamic system relaxes toward a
steady state in such a way that the rate of the entropy pro-
duction is negative

d�

dt
	 0 �d�

dt
= 0 at the steady state� , �4�

where �=L��X�X� indicates the entropy production and t is
time. Prigogine generalized Eq. �3�, which applies only to
adiabatic or isothermal transformations, by introducing the
entropy production due to fluctuations. Denoting by 
i �i
=1, . . .m� the m deviations of the thermodynamic quantities
from their equilibrium value, Prigogine proposed that the
probability distribution of finding a state in which the values

i lie between 
i and 
i+d
i is given by �3�

W = W0 exp��IS/kB� ,

where

�IS = �
E

F

dIs
dIs

dt
� � , �5�

E and F indicate the equilibrium state and the state to which
a fluctuation has driven the system, respectively. Note that
this probability distribution remains unaltered for flux-force
transformations leaving invariant the entropy production.

In 1954, Glansdorff and Prigogine �5� demonstrated a
more general theorem valid also when the system is out of
Onsager’s region. They showed that regardless of the type of
processes, a thermodynamic system relaxes toward a steady
state in such a way that the following quantity P is negative:

P � J�

dX�

dt
	 0 �P = 0 at the steady state� . �6�

Inequality �6� reduces to inequality �4� for a−a or b−b pro-
cesses in the Onsager region. For spatially extended systems,
the expression in Eq. �6� should be replaced by

P � �
�

J�

dX�

dt
dv 	 0 �P = 0 at the steady state� ,

�7�

where dv is the �spatial� volume element and the integration
is over the entire space � occupied by the system in ques-
tion. J��r , t� and X��r , t� denote the space-time-dependent
fluxes and forces, respectively. The phenomenological equa-
tions are not needed for deriving this more general theorem
and no restrictions are imposed to the transport coefficients
�apart from the validity of the second principle of thermody-
namics�. Therefore, no use is made of the Onsager reciprocal
relations nor it is necessary to assume that the phenomeno-
logical coefficients are constants. The inequality expressed in
Eq. �6� �or in Eq. �7�� is referred to as the universal criterion
of evolution �UCE� and it is the most general result obtained
up to now in thermodynamics of irreversible processes. Out
of Onsager’s region, the transport coefficients may depend
on the thermodynamic forces and Eq. �2� may lose their va-
lidity. This happens when the first end/or the second assump-
tion of the Onsager theory �i.e., the above-mentioned as-
sumption �i� end/or assumption �ii�� is not satisfied.
Magnetically confined tokamak plasmas are a typical ex-
ample of thermodynamic systems out of Onsager’s region. In
this case, even in the absence of turbulence, the local distri-
bution functions of species �electrons and ions� deviate from
the �local� Maxwellian. After a short transition time, the
plasma remains close to �but, it is not in� a state of local
equilibrium �see, for example, �6� and Sec. II E�.

Transport in the nonlinear region has been largely studied
both experimentally and theoretically. In particular, many
theories based on the Fourier expansion of the transport co-
efficients in terms of the thermodynamic forces have been
proposed �see, for example, Refs. �7–9��. The theoretical pre-
dictions are however in disagreement with the experiments
and this is mainly due to the fact that, in the series expan-
sion, the terms of superior order are greater than those of
inferior order. Therefore, the truncation of the series at some
order is not mathematically justified.

A thermodynamic field theory �TFT� has been developed
in 1999 for proposing a closure relations theory for thermo-
dynamic systems out of the Onsager region �10�. In particu-
lar, the main objective of this work is to determine how the
linear flux-force relations �i.e., Eq. �1�� should be “de-
formed” in such a way that the thermodynamic theorems for
systems far from equilibrium are respected �10�. The On-
sager coefficients enter in the theory as an input in the equa-
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tions and they have to be calculated by the kinetic theory.
Attempts to derive a generally covariant thermodynamic
field theory �GTFT� can be found in Ref, �11�. The charac-
teristic feature of the TFT is its purely macroscopic nature.
This does not mean a formulation based on the macroscopic
evolution equations but rather a purely thermodynamic for-
mulation starting solely from the entropy production and
from the transport equations. The latter provides the possi-
bility of defining an abstract space �the thermodynamic
space� covered by the n independent thermodynamic forces
X�, whose metric is identified with the symmetric part of the
transport matrix. The law of evolution is not the dynamical
law of particle motion or the set of two-fluid macroscopic
equations of plasma dynamics. The evolution in the thermo-
dynamic space is rather determined by postulating three
purely geometrical principles: the shortest path principle, the
skew-symmetric piece of the transport coefficients in closed
form, and the principle of least action. From theses prin-
ciples, a set of closure equations, constraints, and boundary
conditions are derived. These equations determine the non-
linear corrections to the linear �“Onsager”� transport coeffi-
cients. However, the formulation of the thermodynamic field
theory, as reported in Ref. �10�, raises the following funda-
mental objection. There are no strong experimental evi-
dences supporting the requirement that the skew-symmetric
piece of the transport coefficients is in a closed form.

Moreover, the principle of general covariance, which in
Ref. �11� has been assumed to be valid for general transfor-
mations in the space of thermodynamic configurations,
is—in reality—respected only by a very limited class of ther-
modynamic processes. In this paper, through an appropriate
mathematical formalism, the entropy-covariant formalism,
the entire TFT is reformulated removing the assumptions re-
garding the closed form of the skew-symmetric piece of the
transport coefficients and the general covariance principle
�GCP�. The GCP is replaced by the thermodynamic covari-
ance principle �TCP� or the De Donder-Prigogine �12,13�
statement, establishing that thermodynamic systems obtained
by a transformation of forces and fluxes in such a way that
the entropy production remains unaltered are thermodynami-
cally equivalent. This principle applies to transformations
in the thermodynamic space and they may be referred to as
the thermodynamic coordinate transformations �TCTs�. It is
worthwhile mentioning that the TCP is actually largely used
in a wide variety of thermodynamic processes ranging from
nonequilibrium chemical reactions to transport processes in
tokamak plasmas �see, for examples, the papers and books
cited in Refs. �6,14��. To the author’s knowledge, the validity
of the thermodynamic covariance principle has been verified
empirically without exception in physics until now.

The analysis starts from the following observation. Con-
sider a relaxation process of a thermodynamic system in the
Onsager region. If the system relaxes toward a steady state
along the shortest path in the thermodynamic space then the
universal criterion of evolution is automatically satisfied. In-
deed, in this case, we can write

J�Ẋ� = �L�� + f0���X�Ẋ�, �8�

where the dot over the variables indicates the derivative with
respect to the arc parameter � defined as

d�2 = L��dX�dX�. �9�

Parameter � can be chosen in such a way that it vanishes
when the system begins to evolve and it assumes the value,
say l, when the system reaches the steady state. In the On-
sager region, the thermodynamic space is an Euclidean space

with metric L��. The equation of the shortest path reads Ẍ�

=0, with solution of the form

X� = a�� + b�, �10�

where a� and b� are arbitrary constant independent of the arc
parameter. Inserting Eq. �10� into Eq. �8� and observing that
L��a�a�=1 and f0��a�a�=0, we find

J�Ẋ� = � + �0��a�b�. �11�

At the steady state �i.e., for �= l� J�Ẋ� 	st state=0. �because
P 	st state=0�. Equation �11� can then be written as

P = − �l − �� 	 0 �with P � J�Ẋ�� �12�

or

P = − �l − ���L��

dX�

dt

dX�

dt
�1/2

	 0. �13�

The equation for the dissipative quantity P, when the ther-
modynamic system relaxes in the linear region, is thus given
by Eq. �11�

dP

d�
= 1. �14�

Also note that �̇=2P	0, i.e., the minimum entropy produc-
tion theorem is also satisfied during relaxation. Now, our
question is “How can we deform the linear flux-force rela-
tions in such a way that the universal criterion of evolution
remains automatically satisfied, without imposing any re-
strictions to the transport coefficients, also out of Onsager’s
region?.” Outside the linear region, one may be tempted to
construct a Riemannian space �of three or more dimensions�
which is projectively flat, i.e., having a vanishing Weyl’s �15�
projective curvature tensor. In this case, indeed, there exists a
coordinate system such that the equations of the shortest path
are linear in the coordinates �i.e., the shortest paths are given
by equations of the form �10��. In this respect, we have the
following Weyl theorem. A necessary and sufficient condi-
tion that a Riemannian space be projectively flat is that its
Riemannian curvature be constant everywhere. On the other
hand, to reobtain the Onsager relations, we should also re-
quire that near equilibrium, the Riemannian space reduces to
a flat space �which has zero Riemannian curvature�. The
Weyl theorem can be conciliated with our request only if
there exists a coordinate system such that Eq. �2� is valid
everywhere, which is in contrast with experiments. Thus one
wants the universal criterion of evolution satisfied also out of
the Onsager region, without imposing a priori any restric-
tions on transport coefficients, a non-Riemannian thermody-
namic space is required. Clearly, a transport theory without
knowledge of microscopic dynamical laws cannot be devel-
oped. Transport theory is only but an aspect of nonequilib-
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rium statistical mechanics, which provides the link between
microlevel and macrolevel. This link appears indirectly in
the “unperturbed” matrices, i.e., the L�� and the f0�� coeffi-
cients used as an input in the equations. These coefficients,
which depend on the specific material under consideration,
have to be calculated in the usual way by kinetic theory.

In Sec. II, we introduce a non-Riemannian space whose
geometry is constructed in such a way that �A� the theorems,
valid when a generic thermodynamic system relaxes out of
equilibrium, are satisfied; �B� the nonlinear closure equations
are covariant under the TCTs.

We shall see that the properties of geometry do not de-
pend on the shortest paths but upon a particular expression of
the affine connection. Our geometry is then of affine type and
not of projective type. At the end of Sec. II, we derive the
nonlinear closure equations through an appropriate math-
ematical formalism: the entropy-covariant formalism. This
formalism allows to respect the De Donder-Prigogine state-
ment. New geometrical objects such as thermodynamic co-
variant differentiation or the thermodynamic curvature are
also introduced. We shall see that under the weak-field ap-
proximation and when �
1, but only in these limits, the
new nonlinear closure equations reduce to the ones obtained
in Ref. �10�. So that, all results found in Ref. �1� �for mag-
netically confined plasmas� and in Ref. �16� �for the nonlin-
ear thermoelectric effect and the unimolecular triangular re-
action� remain valid. In Sec. III we show that this formalism
is able to verify the thermodynamic theorems �in particular,
the universal criterion of evolution� for systems relaxing out
of the Onsager region. Mathematical details and demonstra-
tions of the theorems are reported in Appendixes A and D.

It should be noted that geometrical formalisms have been
applied for treating topics different to the transport closure
theory such as the use of the matrix of the second derivatives
of the entropy as a metric tensor in the analysis of fluctua-
tions �see, for example, �17�� and the use of symplectic ge-
ometries in the analysis of nonlinear evolution equations of
dynamical systems �18�.

II. ENTROPY-COVARIANT FORMALISM

Consider a thermodynamic system driven out from equi-
librium by a set of n independent thermodynamic forces 
X��
��=1, . . .n�. It is also assumed that the system is submitted
to time-independent boundary conditions. The set of conju-
gate flows 
J�� is coupled to the thermodynamic forces
through the relation,

J� = ����X�X�, �15�

where the transport coefficients ����X� may now depend on
the thermodynamic forces. The symmetric piece of ����X� is
denoted with g���X� and the skew-symmetric piece as
f���X�,

����X� =
1

2
�����X� + ����X�� +

1

2
�����X� − ����X��

= g���X� + f���X� , �16�

where

g���X� =
1

2
�����X� + ����X�� = g���X� , �17�

f���X� =
1

2
�����X� − ����X�� = − f���X� . �18�

It is assumed that g���X� is a positive-definite matrix. For
conciseness, in the sequel we drop the symbol �X� in ���,
g��, and f��, being implicitly understood that these matrices
may depend on the thermodynamic forces. With the elements
of the transport coefficients two objects are constructed: op-
erators, which may act on thermodynamic tensorial objects
and thermodynamic tensorial objects, which under coordi-
nate �forces� transformations, obey to well-specified transfor-
mation rules.

A. Operators

Two operators are introduced, the entropy production op-
erator ��X� and the dissipative quantity operator P�X�, acting
on the thermodynamic forces in the following manner:

��X�: → ��X� � XgXT,

P�X�: → P�X� � X�ẊT. �19�

In Eq. �19�, the transport coefficients are then considered as
elements of the two n�n matrices, � and g. The positive
definiteness of the matrix g�� ensures the validity of the sec-
ond principle of thermodynamics ��0. These matrices mul-
tiply the thermodynamic forces X expressed as n�1 column
matrices. The dot symbol stands for derivative with respect
to parameter � defined in Eq. �31�. We anticipate that this
parameter is invariant under the thermodynamic coordinate
transformations. Thermodynamic states Xs such that

P�Xs� = 0 �20�

are referred to as steady states. Of course, the steady states
should be invariant expressions under the thermodynamic
coordinate transformations. Equations �19� should not be in-
terpreted as the metric tensor g��, which acts on the coordi-
nates. The metric tensor acts only on elements of the tangent
space �such as dX�, see the forthcoming paragraphs� or on
the thermodynamic tensorial objects.

B. Transformation rules of entropy production,
forces, and flows

According to the De Donder-Prigogine �12,13� statement,
thermodynamic systems are thermodynamically equivalent
if—under the transformation of fluxes and forces—the bilin-
ear form of the entropy production � remains unaltered �19�.
In mathematical terms, this implies

� = J�X� = J��X��. �21�

This condition and the condition that also the dissipative
quantity �cf. Eqs. �19�� must be an invariant expression re-
quire that the transformed thermodynamic forces and flows
satisfy the relation
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X�� =
�X��

�X� X�,

J�� =
�X�

�X��J�. �22�

These transformations may be referred to as TCTs. The ex-
pression of entropy production becomes accordingly

� = J�X� = ���X�X� = g��X�X� = g��� X��X�� = ��. �23�

From Eqs. �22� and �23� we derive

g��� = g��

�X�

�X��

�X�

�X�� . �24�

Moreover, inserting Eqs. �22� and �24� into relation J�

= �g��+ f���X�, we obtain

J�� = �g��� + f��

�X�

�X��

�X�

�X���X�� �25�

or

J�� = �g��� + f��� �X�� with f��� = f��

�X�

�X��

�X�

�X�� . �26�

Hence, the transport coefficients transform like a thermody-
namic tensor of second order �20�.

C. Properties of the TCT

By direct inspection, it is easy to verify that the general
solutions of Eq. �22� are

X�� = X1F��X2

X1 ,
X3

X2 , ¯
Xn

Xn−1� , �27�

where F� are arbitrary functions of variables Xj /Xj−1 with
�j=2, . . . ,n�. Hence, the TCT may be highly nonlinear coor-
dinate transformations but, in the Onsager region, we may
�or we must� require that they have to reduce to

X�� = c�
�X�, �28�

where c�
� are constant coefficients �i.e., independent of the

thermodynamic forces�. Note that from Eq. �22�, the follow-
ing important identities are derived:

X� �2X��

�X� � X� = 0; X�� �2X�

�X�� � X�� = 0. �29�

Moreover

dX�� =
�X��

�X� dX�,

�

�X�� =
�X�

�X��

�

�X� , �30�

i.e., dX� and � /�X� transform like a thermodynamic contra-
variant and a thermodynamic covariant vector, respectively.
According to Eq. �30�, thermodynamic vectors dX� define

the tangent space to Ts. It also follows that the operator
P�X�, i.e., the dissipation quantity, and in particular the defi-
nition of steady states are invariant under TCT. Parameter �
defined as

d�2 = g��dX�dX� �31�

is a scalar under TCT. The operator O

O � X� �

�X� = X�� �

�X�� = O� �32�

is also invariant under TCT. This operator plays an important
role in the formalism.

D. Thermodynamic space, thermodynamic covariant
derivatives, and thermodynamic curvature

A non-Riemannian space with an affine connection ���
�

is now introduced �see also Appendix D�. Consider an n
space in which the set of quantities ���

� is assigned as func-
tions of the n independent thermodynamic forces X� chosen
as coordinate system. Under a coordinate �forces� transfor-
mation, it is required that the functions ���

� transform ac-
cording to the law,

����� = ���
� �X��

�X�

�X�

�X��

�X�

�X�� +
�X��

�X�

�2X�

�X�� � X�� . �33�

With the linear connection ���
� , the absolute derivative of an

arbitrary thermodynamic contravariant vector denoted by T�

along a curve can be defined as

�T�

��
=

dT�

d�
+ ���

� T�dX�

d�
. �34�

It is easily checked that if the parameter along the curve is
changed from � to � then the absolute derivative of a ther-
modynamic tensor field with respect to � is d� /d� times the
absolute derivative with respect to �. The absolute derivative
of any contravariant thermodynamic tensor may be easily
obtained generalizing Eq. �34�. In addition, the linear con-
nection ���

� is submitted to the following basic postulates:
�1� the absolute derivative of a thermodynamic contra-

variant tensor is a thermodynamic tensor of the same order
and type,

�2� the absolute derivative of an outer product of thermo-
dynamic tensors, is given—in terms of factors—by the usual
rule for differentiating a product, and

�3� the absolute derivative of the sum of thermodynamic
tensors of the same type is equal to the sum of the absolute
derivatives of the thermodynamic tensors.

In a space with a linear connection, we can introduce the
notion of the shortest path defined as a curve such that a
thermodynamic vector, initially tangent to the curve and
propagated parallelly along it, remains tangent to the curve
at all points. By a suitable choice of the parameter �, the
differential equation for the shortest path is simplified reduc-
ing to
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d2X�

d�2 + ���
� dX�

d�

dX�

d�
= 0. �35�

To satisfy the general requirement �A� �see Sec. III�, it is
required that the absolute derivative of the entropy produc-
tion satisfies the equality

��

��
= J�

�X�

��
+ X��J�

��
. �36�

More in general, it is required that the operations of contrac-
tion and absolute differentiation commute for all thermody-
namic vectors. As a consequence, the considered space
should be a space with a single connection. The absolute
derivative of an arbitrary covariant thermodynamic vector
denoted by T� is then defined as

�T�

��
=

dT�

d�
− ���

� T�

dX�

d�
. �37�

The absolute derivative of the most general contravariant,
covariant. and mixed thermodynamic tensors may be ob-
tained generalizing Eqs. �34� and �37�. The derivatives, co-
variant under TCT, of thermodynamic vectors are defined as

T	�
� =

�T�

�X� + ���
� T�,

T�	� =
�T�

�X� − ���
� T�. �38�

For the entropy production, it is also required that

�	�	� = �	�	�. �39�

More in general, Eq. �39� should be verified for any thermo-
dynamic scalar T. This postulate requires that the linear
single connection ���

� is also symmetric, i.e., ���
� =���

� . A
non-Riemannian geometry can now be constructed out of
n2�n+1� /2 quantities, the components of ���

� , according to
the general requirements �A� and �B� mentioned in the intro-
duction.

In the forthcoming paragraph, the expression of the affine
connection ���

� is determined from assumption �A�. In Sec.
III it is shown that the universal criterion of evolution ap-
plied to thermodynamic systems relaxing toward a steady
state, is automatically satisfied along the shortest path if, in
case of symmetric processes �i.e., for a−a or b−b pro-
cesses�, we impose

���
� =

1

2
g��� �g��

�X� +
�g��

�X� −
�g��

�X� � +
1

2�
X�O�g��� ,

where

O�g��� � X��g��

�X� . �40�

In the general case, we have

���
� = Ň��g��� �

��

 +

Ň��

2�
X�O�g���

+
Ň��

2�
X�X�� � f��

�X� +
� f��

�X� �
+

Ň��

2�
f��X

�X�� �g��

�X� +
�g��

�X� � , �41�

where the thermodynamic Christoffel symbols of the second
kind are introduced

� �

��

 =

1

2
g��� �g��

�X� +
�g��

�X� −
�g��

�X� � �42�

and matrix Ň�� is defined as

N�� � g�� +
1

�
f��X�X� +

1

�
f��X�X�

with Ň��:Ň��N�� = ��
�. �43�

In Appendix A it is proven that the affine connections �40�
and �41� transform, under a TCT, as in Eq. �33� and satisfy
the postulates �1�–�3�. From Eq. �43� we easily check that

N�� = N��,

N��X� = �g�� +
1

�
f��X�X� +

1

�
f��X�X��X� = J�,

N��X� = N��X� = J�,

N��X�X� = J�X� = � , �44�

while

Ň�� = Ň��,

Ň��J� = Ň��N��X� = Ň��N��X� = X�,

Ň��J� = Ň��J� = X�,

Ň��J�J� = X�J� = � . �45�

At this point, we are confronted with the following theorem
�21� for two symmetric connections, the most general change
which preserves the paths is:

�̄��
� = ���

� + ��
��� + ��

���, �46�

where �� is an arbitrary covariant thermodynamic vector and
��

� denotes the Kronecker tensor. In literature, the modifica-
tions of the connection similar to Eq. �46� are referred to as
projective transformations of the connection and �� the pro-
jective covariant vector. The introduction of the affine con-
nection gives rise, then, to the following difficulty. The uni-
versal criterion of evolution is satisfied for every shortest

path constructed with affine connections �̄��
� linked to ���

�

by projective transformations. This leads to an indetermina-
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tion of the expression for the affine connection, which is not
possible to remove by using the De Donder-Prigogine state-
ment and the thermodynamic theorems alone. This problem
can be solved by postulating that the nonlinear closure equa-
tions �i.e., the equations for the affine connection and the
transport coefficients� be symmetric and projective invariant
�i.e., invariant under projective transformations�.

For any arbitrary covariant thermodynamic vector field
denoted by T��X�, we can form the thermodynamic tensor
R���

� �X� in the following manner �22�:

T�	�	��X� − T�	�	��X� = T��X�R���
� �X� , �47�

where �by omitting, for conciseness, the symbol �X��

R���
� =

����
�

�X� −
����

�

�X� + ���
� ���

� − ���
� ���

� , �48�

with R���
� satisfying the following identities:

R���
� = − R���

� ,

R���
� + R���

� + R���
� = 0,

R���	�
� + R���	�

� + R���	�
� = 0. �49�

By contraction, we obtain two distinct thermodynamic ten-
sors of second order

R�� = R���
� =

����
�

�X� −
����

�

�X� + ���
� ���

� − ���
� ���

� ,

F�� =
1

2
R���

� =
1

2
� ����

�

�X� −
����

�

�X� � , �50�

with F�� being skew symmetric and R�� being asymmetric.
Tensor R�� can be rewritten as

R�� = B�� + F��,

where

B�� = B�� =
1

2
� ����

�

�X� +
����

�

�X� � −
����

�

�X� + ���
� ���

� − ���
� ���

� .

�51�

Hence, F�� is the skew-symmetric part of R�� �25�. It is
argued that the closure equations can be derived by the varia-
tion in a stationary action, which involves R��. Symmetric
and projective invariant closure equations may be obtained
by adopting the following strategy: �1� a suitable projective
transformation of the affine connection is derived so that R��

be symmetric and F�� be a zero thermodynamic tensor and
�2� the most general projective transformation that leave un-
altered R�� and F�� �=0� is determined. By a projective trans-
formation, it is found that

B̄�� = B�� + n� ���

�X� − ����� − � ���

�X� − ����� ,

F̄�� = F�� +
n + 1

2
� ���

�X� −
���

�X�� . �52�

Equation �50� shows that F�� can be written as the curl of the
vector a� /2 defined as �21�

a� = ���
� − � �

��

 . �53�

Consequently, by choosing

�� = −
1

n + 1
����

� − � �

��

� , �54�

we have F̄��=0 and R̄��= B̄��. From Eq. �52�, we also have

that the thermodynamic tensor R� �� remains symmetric for
projective transformations of connection if, and only if, the
projective covariant vector is the gradient of an arbitrary
function of the X’s �21�. In this case, the thermodynamic

tensor F� �� remains unaltered, i.e., F� ��=0. Hence, at this
stage, the expression of the affine connection is determined
up to the gradient of a function, say �, of the thermodynamic
forces, which is also scalar under TCT. Let us impose now
the projective invariance. Equation �52� indicate that a nec-

essary and sufficient condition that R̄�� be projective invari-
ant is that

�2�

�X� � X� −
��

�X�

��

�X� = 0,

with

� = 0 �in the Onsager region� ,

��

�X� = 0 �in the Onsager region� ,

�2�

�X� � X� = 0 �in the Onsager region� , �55�

where � is a function, invariant under TCT. The solution of
Eq. �55� is ��0 everywhere. The final expression of the
affine connection for symmetric processes reads then

���
� = � �

��

 +

1

2�
X�O�g��� −

1

2�n + 1��
���

�X�O�g���

+ ��
�X�O�g���� . �56�

The general case is given by
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���
� = Ň��g��� �

��

 +

Ň��

2�
X�O�g���

+
Ň��

2�
X�X�� � f��

�X� +
� f��

�X� �
+

Ň��

2�
f��X

�X�� �g��

�X� +
�g��

�X� � + ����
� + ����

�,

�57�

where

�� = −
Ň��g��

n + 1
� �

��

 −

Ň��X�

2�n + 1��
O�g���

−
Ň��

2�n + 1��
X�X�� � f��

�X� +
� f��

�X� �
−

Ň��

2�n + 1��
f��X

�X�� �g��

�X� +
�g��

�X� � +
1

n + 1

� log�g

�X� .

�58�

Note that the thermodynamic space tends to reduce to a
�thermodynamic� Riemannian space when �−1�1. The fol-
lowing definitions are adopted:

�i� The space covered by n independent thermodynamic
forces X�, with metric tensor g�� and a linear single connec-
tion given by Eq. �57�, may be referred to as thermodynamic
space Ts �or, space of the thermodynamic forces�.

In Ts, the length of an arc is defined by the formula

L = �
�1

�2 �g��

dX�

d�

dX�

d�
�1/2

d� . �59�

The positive definiteness of matrix g�� ensures that L�0.
Consider a coordinate system X�, defining the thermody-
namic space Ts.

�i� All thermodynamic spaces obtained from Ts by a TCT
transformation may be called entropy-covariant spaces. In
the TFT description, a thermodynamic configuration corre-
sponds to a point in the thermodynamic space Ts. The equi-
librium state is the origin of the axes. Consider a thermody-
namic system out of equilibrium, represented by a certain
point, say a, in the thermodynamic space.

�ii� A thermodynamic system is said to relax �from the
geometrical point of view� toward another point of the ther-
modynamic space, say b, if it moves from point a to point b
following the shortest path �35�, with the affine connection
given in Eq. �57�. Note that in this context the term relax-
ation refers to a relaxation in a geometrical sense.

�iii� With Eq. �57�, Eq. �38� may be called the thermody-
namic covariant differentiation of a thermodynamic vector,
while Eqs. �34� and �37� as the thermodynamic covariant
differentiation along a curve of a thermodynamic vector.

�iv� With affine connection �57�, R���
� may be called the

thermodynamic curvature tensor.
�v� The scalar R obtained by contracting the thermody-

namic tensor R�� with the symmetric piece of the transport

coefficients �i.e., R=R��g��� may be called the thermody-
namic curvature scalar.

The principle of least action. From expression �57�, the
following mixed thermodynamic tensor on the third order
can be constructed:

���
� � Ň��g��� �

��

 +

Ň��

2�
X�O�g���

+
Ň��

2�
X�X�� � f��

�X� +
� f��

�X� �
+

Ň��

2�
f��X

�X�� �g��

�X� +
�g��

�X� �
+ ����

� + ����
� − � �

��

 . �60�

This thermodynamic tensor satisfies the important identities

���
� = ���

� = 0. �61�

Again, from ���
� the mixed thermodynamic tensor on the

fifth order can be constructed

S���
�� �

1

2
����

� ��
� + ���

� ��
� + ���

� ��
�

+ ���
� ��

� − ���
� ��

� − ���
� ��

�� . �62�

By contraction, a thermodynamic tensor on the third order, a
thermodynamic vector, and a thermodynamic scalar can be
formed as follows:

S�
�� � S���

�� g�� = ���
� g�� + ���

� g��

−
1

2
���

� g����
� −

1

2
���

� g����
�,

S� � S�
�� =

1 − n

2
���

� g��,

S � S�
�����

� = 2���
� ���

� g��. �63�

The following postulate is now introduced. There exists a
thermodynamic action I, scalar under TCT, which is station-
ary with respect to arbitrary variations in the transport coef-
ficients and the affine connection.

This action, scalar under TCT, is constructed from the
transport coefficients, the affine connection, and their first
derivatives. In addition, it should have linear second deriva-
tives of the transport coefficients and it should not contain
second �or higher� derivatives of the affine connection. We
also require that the action is stationary when the affine con-
nection takes the expression given in Eq. �57�. The only ac-
tion satisfying these requirements is

I =� �R�� − ����
� − �̃��

� �S���
�� �g���gdnX , �64�

where dnX denotes an infinitesimal volume element in Ts and

�̃��
� is the expression given in Eq. �57�, i.e., �̃��

� =���
�
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+ 
 �
�� �. To avoid misunderstanding, while it is correct to men-

tion that this postulate affirms the possibility of deriving the
nonlinear closure equations by a variational principle it does
not state that the expressions and theorems obtained from the
solutions of these equations can also be derived by a varia-
tional principle. In particular, the well-known universal cri-
terion of evolution established by Glansdorff-Prigogine can-
not be derived by a variational principle �see also Sec. III�.

E. Nonlinear closure equations

The transport coefficients and the affine connection
should be considered as independent dynamical variables �as
opposed to X�, which is a mere variable of integration� �26�.
Therefore, the action �64� is stationary with respect to arbi-
trary variations in g��, f��, and ���

� . As a first step, we sup-
pose that the transport coefficients and the affine connection
be subject to infinitesimal variations, i.e., g��→g��+�g��,
f��→ f��+�f��, and ���

� →���
� +����

� , where �g��, �f��,
and ����

� are arbitrary, except that they are required to vanish
as 	X�	→�. Upon the application of the principle of station-
ary action, the following nonlinear closure equations �i.e.,
the equations for the transport coefficients and the affine con-
nection� are derived �see Appendix B�:

R�� −
1

2
g��R = − S�

����̃��
�

�g�� ,

S�
����̃��

�

�f�� = 0,

g��	� = − ���
� g�� − ���

� g��, �65�

where the variations in the affine connection �57� with re-
spect to the transport coefficients appear in the first two
equations. Notice that R��− 1

2g��R does not coincide with
Einstein’s tensor �see also Appendix C�. From the first equa-
tion in Eq. �65� and for n�2, the expression for the thermo-
dynamic curvature scalar is obtained �28�

R =
2

n − 2
g��S�

����̃��
�

�g�� �n � 2� . �66�

The third equation in Eq. �65� can be rewritten as

g��,� − ���
� g�� − ���

� g�� = − ���
� g�� − ���

� g��, �67�

where the comma �,� denotes partial differentiation. Adding
to this equation, the same equation with � and � inter-
changed and subtracting the same equation with � and �
interchanged gives

g��,� + g��,� − g��,� = 2g�����
� − 2g�����

� �68�

or

���
� = � �

��

 + ���

� = �̃��
� . �69�

Hence, action �64� is stationary when the affine connection
takes the expression given in Eq. �57�. For a−a or b−b
processes, close to the Onsager region, it holds that

g�� = L�� + h�� + O��2� ,

�� = O��� with � = max� 	eigenvalues�g�� − L���	
eigenvalues�L��� 
 � 1,

�70�

where ���1 /� and h�� are small variations with respect to
Onsager’s coefficients. In this region, Eq. �64� is stationary
for arbitrary variations of h�� and ���

� . It can be shown that
�10�

L�� �2h��

�X� � X� + L�� �2h��

�X� � X� − L�� �2h��

�X� � X� − L�� �2h��

�X� � X�

= 0 + O��2� ,

���
� =

1

2
L���h��,� + h��,� − h��,�� + O��2� . �71�

Equation �71� should be solved with the appropriate gauge
choice and boundary conditions.

The validity of Eq. �71� has been largely tested by ana-
lyzing several symmetric processes such as the thermoelec-
tric effect and the unimolecular triangular chemical reactions
�10�. More recently, these equations have been also used to
study transport processes in magnetically confined plasmas.
In all examined examples, the theoretical results of the TFT
are in line with experiments. It is worthwhile mentioning that
for transport processes in tokamak plasmas, the predictions
of the TFT for radial energy and matter fluxes are much
closer to the experimental data than the neoclassical theory,
which fails with a factor 103÷104 �1,6�. The physical origin
of this failure can be easily understood. As mentioned in the
introduction, even in the absence of turbulence, the state of
the plasma is close to—but not in—a state of local equilib-
rium. Indeed, starting from an arbitrary initial state, the col-
lisions would tend, if they were alone, to bring the system
very quickly to a local equilibrium state. But slow processes,
i.e., free-flow and electromagnetic processes, prevent the
plasma from reaching this state. The distribution function for
the fluctuations of the thermodynamic quantities also devi-
ates from a Maxwellian preventing the thermodynamic
fluxes from being linearly connected with the conjugate
forces �refer to the Onsager theory �2� and, for example,
�29��. In tokamak plasmas, the thermodynamic forces and
the conjugate flows are the generalized frictions and the Her-
mitian moments, respectively �6�. In the neoclassical theory,
the flux-force relations have been truncated at the linear or-
der �refer, for example, to �30��, in contrast with the fact that
the distribution function of the thermodynamic fluctuations is
not a Maxwellian. This may be one of the main causes of the
strong disagreement between the neoclassical previsions and
the experimental profiles �1,31�. It is, however, important to
mention that it is well accepted that another main reason of
this discrepancy is attributed to turbulent phenomena exist-
ing in tokamak plasmas. Fluctuations in plasmas can become
unstable and therefore amplified, with their nonlinear inter-
action successively leading the plasma to a state, which is far
away from equilibrium. In this condition, the transport prop-
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erties are supposed to change significantly and to exhibit
qualitative features and properties that could not be ex-
plained by collisional transport processes, e.g., size scaling
with machine dimensions and nonlocal behaviors that clearly
point at turbulence spreading, etc. The scope of the work
cited in Ref. �1� is mainly to demonstrate that collisional
transport processes in fusion plasmas can be computed via a
nonlinear theory on a more rigorous and sound basis than
that provided by the well-known classical and/or neoclassical
theory. The proposed approach includes prior-known results
as a limiting case, where nonlinear and nonlocal effects in
collisional transport processes can be ignored. More gener-
ally, the TFT estimates of collisional transport fluxes can be
amplified by up to 2 or 3 orders of magnitude with respect to
the classical/neoclassical levels in the electron-transport
channel, while ions corrections are much smaller. However,
TFT collisional transport levels remain a fraction of the val-
ues observed experimentally, confirming that the turbulent
transport is the generally dominant process determining par-
ticle and heat fluxes in magnetically confined plasmas. In
this specific example, the nonlinear corrections provide with
an evaluation of the �parallel� Hermitian moments of the
electron and ion distribution functions �1�.

F. Some remarks on spatially extended
thermodynamic systems

The macroscopic description of thermodynamic systems
gives rise to state variables that depend continuously on
space coordinates. In this case, the thermodynamic forces
possess an infinity associated to each point of the space co-
ordinates. The system may be subdivided into N cells �N
�N�N in three dimensions�, each of which labeled by a
wave number k, and we follow their relaxation. Without loss
of generality, we consider a thermodynamic system confined
in a rectangular box with sizes lx, ly, and lz. We write the
wave number as

k = 2��nx

lx
,
ny

ly
,
nz

lz
� with �nx = 0, � 1, ¯ � Nx

ny = 0, � 1, ¯ � Ny

nz = 0, � 1, ¯ � Nz.
�
�72�

The fluxes and forces developed in �spatial� Fourier’s series
read as

J��r,t� = �
n=−N

N

Ĵ��k��t�exp�ik · r� ,

X��r,t� = �
n�=−N

N

X̂�k��
� �t�exp�ik� · r� �73�

where, for brevity, n and N stand for n= �nx ,ny ,nz� and N
= �Nx ,Ny ,Nz�, respectively. The Fourier coefficients are given
by

Ĵ��k��t� =
1

�
�

�

J��r,t�exp�− ik · r�dv ,

X̂�k��
� �t� =

1

�
�

�

X��r,t�exp�− ik� · r�dv . �74�

In particular, the contributions at the thermodynamic limit
�i.e., for k→0� are expressed as

Ĵ��0��t� =
1

�
�

�

J��r,t�dv = J��t� ,

X̂�0�
� �t� =

1

�
�

�

X��r,t�dv = X��t� . �75�

The entropy production and the fluxes-forces relations take,
respectively, the form

��r,t� = J��r,t�X��r,t� � 0,

J��r,t� = ����r,t�X��r,t� . �76�

Considering that

�
0

lx �
0

ly �
0

lz

exp�i�k + k�� · r�dv = ��k+k�,0

with

�k+k�,0 = �0 if k + k� � 0

1 if k + k� = 0
� = lxlylz
 �77�

from the first equation in Eq. �76�, we also find

�
�

J��r,t�X��r,t�dv

= ��Ĵ��0��t�X̂�0�
� �t� + �

k�0
Ĵ��k��t�X̂�−k�

� �t�� � 0. �78�

On the other hand, we have

Ĵ��0��t� = �̂���0��t�X̂�0�
� �t� + �

k�0
�̂���k��t�X̂�−k�

� �t� , �79�

where

�̂���k��t� =
1

�
�

�

����r,t�exp�− ik · r�dv . �80�

Equation �78� can then be brought into the form

�
�

�dv = �ĝ���0��t�X̂�0�
� �t�X̂�0�

� �t�

+ � �
k�0

��̂���k��t�X̂�−k�
� �t�X̂�0�

� �t� + Ĵ��k��t�X̂�−k�
� �t��

� 0, �81�

where

ĝ���k��t� =
1

�
�

�

G���r,t�exp�− ik · r�dv ,

GIORGIO SONNINO PHYSICAL REVIEW E 79, 051126 �2009�

051126-10



G���r,t� �
1

2
�����r,t� + ����r,t�� . �82�

In Eq. �81�, the first term is the contribution at the thermo-
dynamic limit, whereas the second expression reflects the
interactions between the k cell and the other cells. In a re-
laxation process, contributions from different wave numbers
are negligible with respect to those with same wave numbers
�the slaving principle �32�� and, hence, we finally obtain

�
�

�dv � �ĝ���0��t�X̂�0�
� �t�X̂�0�

� �t� � 0 ∀ X̂�0�
� �t��� � 0� .

�83�

Last inequality is satisfied for any X̂�0�
� �t� if, and only if

ĝ���0��t� =
1

�
�

�

G���r,t�dv = g���t� �84�

is a positive-definite matrix. Therefore, for spatially extended
thermodynamic systems, we replace X��t�→X�k�

� �t� and
����t�→����k��t�. Under these conditions, Eq. �65� deter-
mines the nonlinear corrections to the Onsager coefficients,
while Eqs. �34� and �38�, with affine connection �57�, are the
thermodynamic covariant differentiation along a curve and
the thermodynamic covariant differentiation of a thermody-
namic vector, respectively.

G. Privileged thermodynamic coordinate system

By definition, a thermodynamic coordinate system is a set
of coordinates defined so that the expression of the entropy
production takes the form of Eq. �21�. Once a particular set
of thermodynamic coordinates is determined; the other sets
of coordinates are linked to the first one through a TCT �see
Eq. �22��. The simplest way to determine a particular set of
coordinates is to quote the entropy balance equation

��s

�t
+ � · Js = � , �85�

where �s is the local total entropy per unit volume and Js is
the entropy flux. Let us consider, as an example, a thermo-
dynamic system confined in a rectangular box where chemi-
cal reactions, diffusion of matter, macroscopic motion of the
volume element �convection�, and heat current take place
simultaneously. The entropy flux and the entropy production
read �33,34� as

Js =
1

T�Jq − �
i

Ji�i� + �
i

�ivisi, �86�

� = Jq · �
1

T
−

1

T
�

i

Ji · ����i

T
� − Fi�

+ �
i

wiAi

T
−

1

T
�
ij

�ij�ri
v j � 0, �87�

where �i, �isi, and Ai are the chemical potential, the local
entropy, and the affinity of species “i,” respectively. More-

over, Fi indicates the external force per unit mass acting on i,
�ij indicate the components of the dissipative part of the
pressure tensor Mij �Mij = p�ij +�ij; p is the hydrostatic
pressure�, and v j is the component of the hydrodynamic ve-
locity �see, for example, Ref. �35��. The set of thermody-
namic coordinates is given as

��
1

T
;−

1

T
����i

T
� − Fi� ;

Ai

T
;−

1

T
�ri

v j
 . �88�

For this particular example, this set may be referred to as the
privileged thermodynamic coordinate system. Other ex-
amples of privileged thermodynamic coordinate system, con-
cerning magnetically confined plasmas, can be found in
Refs. �16,30�.

III. THERMODYNAMIC THEOREMS FOR SYSTEMS
OUT OF EQUILIBRIUM

In 1947, Prigogine �3� proved the minimum entropy pro-
duction theorem, which concerns the relaxation of thermody-
namic systems near equilibrium. This theorem states as fol-
lows.

A. MEPT

For a−a or b−b processes, a thermodynamic system near
equilibrium relaxes to a steady state Xs in such a way that the
inequality

d�

dt
	 0 �89�

is satisfied throughout the evolution and is only saturated at
Xs.

The minimum entropy production theorem is generally
not satisfied far from equilibrium. Indeed, under TCT, the
rate of the entropy production transforms as

d��

dt
=

d�

dt
+

�X��

�X�

�2X�

�X��X��X�J�

dX�

dt
. �89a�

In particular, we find

J��
dX��

dt
= J�

dX�

dt
,

X��
dJ��

dt
= X�dJ�

dt
+

�X��

�X�

�2X�

�X��X��X�J�

dX�

dt
. �89b�

The second expression of Eqs. �89b� tells us that nothing can
be said about the sign of X� dJ� / dt . Concerning the quantity
J� dX� / dt , Glansdorff and Prigogine �5� demonstrated in 1954
a theorem, which reads

B. UCE

When the thermodynamic forces and conjugate flows are
related by a generic asymmetric tensor, regardless of the type
of processes, for time-independent boundary conditions a
thermodynamic system—even in strong nonequilibrium
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conditions—relaxes toward a steady state in such a way that
the following universal criterion of evolution is satisfied:

P � J�

dX�

dt
	 0. �90�

This inequality is only saturated at Xs.
For a−a or b−b processes, the UCE reduces to the MEPT

in the Onsager region. As mentioned in the introduction of
this paper, Glansdorff and Prigogine demonstrated this theo-
rem using a purely thermodynamical approach. In this sec-
tion, we shall see that if the system relaxes toward a steady
state along the shortest path then the universal criterion of
evolution is automatically satisfied.

By definition, a necessary and sufficient condition for a
curve to be the shortest path is that it satisfies the differential
equation

d2X�

dt2 + ���
� dX�

dt

dX�

dt
=  �t�

dX�

dt
, �91�

where  �t� is a determined function of time. If we define a
parameter � by

d�

dt
= c exp�  �dt with  � =  − 2��

dX�

dt
, �92�

where c is an arbitrary constant and �� is the projective
covariant vector, Eq. �91� reduces to Eq. �35� with ���

� given
by Eq. �41�. Parameter � is not the affine parameter s of the
shortest path. The relation between these two parameters is

� = b� exp�− 2� ��dX��ds , �93�

where b is an arbitrary constant. Equation �92� allows us to
choose the parameter � in such a way that it increases mono-
tonically as the thermodynamic system evolves in time. In
this case, c is a positive constant and, without loss of gener-
ality, we can set c=1. Parameter � can also be chosen so that
it vanishes when the thermodynamic system begins to evolve

and it takes the �positive� value, say l̄, when the system
reaches the steady state. Multiplying Eq. �35� with the flows
J� and contracting, we obtain

J�

d2X�

d�2 + J����
� dX�

d�

dX�

d�
= 0. �94�

However

J�

d2X�

d�2 =
dP̃

d�
− � d�

d�
�2

−
dX�

d�

dX�

d�
X�

�g��

�X�

−
dX�

d�

dX�

d�
X�

� f��

�X� , �95�

where P̃=J�
dX�

d� and after taking into account the identities
f��

dX�

d�
dX�

d� =0 and g��
dX�

d�
dX�

d� =1. In addition, recalling Eq.

�45� and the relations X�X�=� and f��X�X�=0, it can be
shown that

J����
� dX�

d�

dX�

d�
=

dX�

d�

dX�

d�
X�

�g��

�X� +
dX�

d�

dX�

d�
X�

� f��

�X� .

�96�

Summing Eq. �95� with Eq. �96� and considering Eq. �94�
gives

dP̃

d�
= � d�

d�
�2

. �97�

Integrating Eq. �97� from the initial condition to the steady
state, we find

P̃�Xs� − P̃ =� � d�

d�
�2

d� � 0. �98�

From Eq. �20� we have P̃�Xs�= P�Xs�d� /d�=0, so we finally
obtain

P̃ = J�

dX�

d�
= −� � d�

d�
�2

d� 	 0, �99�

where the inequality is only saturated at the steady state.
Recalling Eq. �92�, the inequality established by the UCE
can be derived

P = P̃
d�

dt
= J�

dX�

d�
�exp�  �dt� 	 0. �100�

Equation �97� can be rewritten as

d

d�
�� d�

d�
�P� = � d�

d�
� . �101�

This equation generalizes Eq. �14�, which was valid only in
the near-equilibrium region �notice that in the linear region,
d� /d�=1 /b=const�. Integrating Eq. �101�, the expression of
the dissipative quantity P is derived

P = − �d�

d�
��

�

l �d��

d�
�d��

= − �g��

dX�

d�

dX�

d�
�−1/2�

�

l �g��

dX�

d�

dX�

d�
�1/2

d�� 	 0.

�102�

On the right, it is understood that the X’s are expressed in
terms of ����. Equation �102� generalizes Eq. �12�, which
was valid only in the linear region. For a−a or b−b pro-
cesses in the Onsager region, Eq. �100� implies the validity
of the inequality �89�. Indeed, Eq. �36� gives

��

��
=

d�

d�
= J�

�X�

��
+ X��J�

d�
= 2J�

�X�

��
+ X�X��L��

��
.

�103�

In the linear region, the coefficients of the affine connection
vanish. Equation �103� is simplified reducing to
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d�

dt
=

d�

d�

d�

dt
= 2�J�

dX�

d�

d�

dt
� = 2P 	 0, �104�

where the inequality is saturated only at the steady state.
Let us now consider spatially extended thermodynamic

systems. We say that a spatially-extended system relaxes
�from the geometrical point of view� towards a steady state if
the thermodynamic mode �i.e., the mode with k=0� relaxes
to the steady state following the shortest path. In this case,
the dissipative quantity should be expressed in the integral
form

P = �
�

J��r,t�dtX��r,t�dv , �105�

where dtX��dX� /dt. In terms of wave vectors k, Eq. �105�
can easily be brought into the form

P = ��Ĵ��0��t�dtX̂�0�
� �t� + �

k�0
Ĵ��k��t�dtX̂�−k�

� �t�� , �106�

where Eq. �77� has been taken into account. As already men-
tioned in Sec. II, in a relaxation process, contributions from
different wave numbers are negligible with respect to those
with same wave numbers �32�. Thus, considering Eq. �75�,
we finally obtain

P = �
�

J��r,t�dtX��r,t�dv � �J��t�dtX
��t� 	 0,

�107�

where inequality �100� has also been taken into account. It is
therefore proven that the universal criterion of evolution is
automatically satisfied if the system relaxes along the short-
est path. Indeed it would be more exact to say that the affine
connection given in Eq. �41� has been constructed, in such a
way that the UCE is satisfied without imposing any restric-
tions on the transport coefficients �i.e., on matrices g�� and
f���. In addition, analogously to Christoffel’s symbols, the
elements of the new affine connection have been constructed
from matrices g�� and f�� and their first derivatives in such a
way that all coefficients vanish in the Onsager region. Equa-
tion �41� provides the simplest expression satisfying these
requirements.

C. MRDP

In Ref. �11�, the validity of the following theorem �mini-
mum rate of dissipation principle �MRDP�� is shown. The
generally covariant part of the Glansdorff-Prigogine quantity
is always negative and is locally minimized when the evolu-
tion of a system traces out a geodesic in the space of ther-
modynamic configurations.

It is important to stress that this theorem does not refer to
the Glansdorff-Prigogine expression reported in Eq. �90� but
only to its generally covariant part. Moreover, it concerns
the evolution of a system in the space of thermodynamic
configurations and not in the thermodynamic space. One
could consider the possibility that the shortest path in the
thermodynamic space is an extremal for the functional

�
�1

�2

J�Ẋ�d� . �108�

The answer is negative. Indeed, a curve is an extremal for
functional �108� if, and only if, it satisfies Euler’s equations
�36�,

Ẋ�� �J�

�X� −
�J�

�X�� = 0. �109�

As it can be easily checked, this extremal coincides with the
shortest path if

1

2
�M��

�X� +
M��

�X� � − ���
� M�� = 0,

where

M�� � J�,� − J�,� = 2f�� + X��g��,� − g��,��

+ X��f��,� − f��,�� �110�

and ���
� given in Eq. �57�. However, Eq. �110� are n2�n

+1� /2 equations for n2 variables �the transport coefficients�
and, in general, for n�1, they do not admit solutions. We
have thus another proof that the universal criterion of evolu-
tion cannot be derived from a variational principle.

IV. CONCLUSIONS AND LIMIT OF VALIDITY
OF THE APPROACH

A macroscopic description of thermodynamic systems re-
quires the formulation of a theory for the closure relations.
To this purpose, a thermodynamic field theory has been pro-
posed a decade ago. The aim of this theory was to determine
the �nonlinear� deviations from of the Onsager coefficients,
which satisfy the thermodynamic theorems for systems out
of equilibrium. The Onsager matrix, which depends on the
materials under consideration, entered in the theory as an
input. Magnetically confined tokamak plasmas are an ex-
ample of thermodynamic systems where the first basic as-
sumption of the Onsager microscopic theory of fluctuations
is not satisfied. This prevents the phenomenological relations
from being linear. Another interesting case may be met in
hydrodynamics. In some circumstances, indeed, nonlinear
terms of convective origin may arise �37�, as, for instance, in
frame-indifferent time derivatives as corotational Jaumann
derivative or upper-convected Maxwell time derivatives,
which do not modify the entropy production.

The main purpose of this paper is to present a formulation
of the thermodynamic field theory where one of the basic
restrictions, namely, the closed form of the skew-symmetric
piece of the transport coefficients �see Ref. �10��, has been
removed. Furthermore, the general covariance principle
respected—in reality—only by a very limited class of ther-
modynamic processes has been replaced by the thermody-
namic covariance principle first introduced by De Donder
and Prigogine for treating nonequilibrium chemical reactions
�12�. The validity of the De Donder-Prigogine statement has
been successfully tested, without exception until now, in a
wide variety of physical processes going beyond the domain
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of chemical reactions. The introduction of this principle re-
quested, however, the application of an appropriate math-
ematical formalism, which may be referred to as the entropy-
covariant formalism. The construction of the present theory
rests on two assumptions:

�i� the thermodynamic theorems valid when a generic
thermodynamic system relaxes out of equilibrium are satis-
fied;

�ii� there exists a thermodynamic action, scalar under ther-
modynamic coordinate transformations, which is stationary
for general variations in the transport coefficients and the
affine connection.

The second strong assumption can only be judged by its
results. A non-Riemannian geometry has been constructed
out of the components of the affine connection, which has
been determined by imposing the validity of the universal
criterion of evolution for nonequilibrium systems, relaxing
toward a steady state. Relaxation expresses an intrinsic
physical property of a thermodynamic system. The affine
connection, on the other hand, is an intrinsic property of
geometry allowing to determine the equation for the shortest
path. It is the author’s opinion that a correct
thermodynamical-geometrical theory should correlate these
two properties. It is important to mention that the thermody-
namic space tends to be Riemannian for small values of the
inverse of the entropy production. In this limit, we obtain
again the same closure relations found in Ref. �10�. The re-
sults established for magnetically confined plasmas �1� and
for the nonlinear thermoelectric effect and the unimolecular
triangular reaction �16� remain then valid.

Finally, note that the transport equations may take even
more general forms than Eq. �15�. The fluxes and the forces
can be defined locally as fields depending on space coordi-
nates and time. The most general transport relation takes the
form

J��r,t� = �
�

dr��
0

t

dt�L���X�r�,t���X��r − r�,t − t�� .

�111�

This type of nonlocal and non-Markovian equation expresses
the fact that the flux at a given point �r , t� could be influ-
enced by the values of the forces in its spatial environment
and by its history. Whenever the spatial and temporal ranges
of influence are sufficiently small, the delocalization and the
retardation of the forces can be neglected under the integral,

L���X�r�,t���X��r − r�,t − t��

� 2����X�r,t��X��r,t���r − r����t − t�� , �112�

where � denotes the Dirac delta function. In this case, the
transport equations reduces to

J��r,t� � ����X�r,t��X��r,t� . �113�

In the vast majority of cases studied at present in transport
theory, it is assumed that the transport equations are of the
form of Eq. �113�. However, equations of the form �111� may
be met when we deal with anomalous transport processes
such as, for example, transport in turbulent tokamak plasmas

�38�. Equation �112� establishes, in some sort, the limit of
validity of the present approach. Equation �65� determines
the nonlinear corrections to the linear �Onsager� transport
coefficients whenever the width of the nonlocal coefficients
can be neglected. It is worthwhile mentioning that in this
paper, the thermodynamic quantities �number density, tem-
perature, pressure, etc.� are evaluated at the local equilibrium
state. This is not inconsistent with the fact that the arbitrary
state of a thermodynamic system is close to �but not in� a
state of local equilibrium. Indeed, as known, it is always
possible to construct a representation in such a way that the
thermodynamic quantities evaluated with a distribution func-
tion close to a Maxwellian do coincide exactly with those
evaluated at the local equilibrium state �see, for example, the
textbook �30��.
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APPENDIX A: TRANSFORMATION LAW AND
PROPERTIES OF THE AFFINE CONNECTION (57)

In this section we show that the affine connection �57�
transforms, under TCT, as in Eq. �33� and satisfies the pos-
tulates �1�–�3�. We first note that the quantity ��

���+��
���

transforms like a mixed thermodynamic tensor of third rank

��
��� + ��

��� = ���
��� + ��

����
�X��

�X�

�X�

�X��

�X�

�X�� . �A1�

Thus, if Eq. �41� transforms, under TCT, such as Eq. �33�,
then so will be Eq. �57�. Consider the symmetric processes.
From Eq. �24�, we have

�g���

�X�� =
�g��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + g��

�2X�

�X�� � X��

�X�

�X��

+ g��

�2X�

�X�� � X��

�X�

�X�� . �A2�

The thermodynamic Christoffel symbols transform then as

� �

��

�

= � �

��

 �X��

�X�

�X�

�X��

�X�

�X�� +
�X��

�X�

�2X�

�X�� � X�� .

�A3�

Recalling that ��=�, from Eq. �A2� we also find
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Ň���

2��
X��O��g��� � =

Ň��

2�
X�O�g���

�X��

�X�

�X�

�X��

�X�

�X�� ,

1

2��
X��O��g��� � =

1

2�
X�O�g���

�X��

�X�

�X�

�X��

�X�

�X�� , �A4�

where Eqs. �22� and �29� have been taken into account.
Therefore, the affine connection

���
� = � �

��

 +

1

2�
X�O�g���

−
1

2�n + 1��
���

�X�O�g��� + ��
�X�O�g���� �A5�

transforms as

����� = ���
� �X��

�X�

�X�

�X��

�X�

�X�� +
�X��

�X�

�2X�

�X�� � X�� . �A6�

Consider now the general case. From Eq. �24� we obtain

1

2
� �g���

�X�� +
�g���

�X�� −
�g���

�X��� =
�X�

�X��

�X�

�X��

�X�

�X���1

2
� �g��

�X� +
�g��

�X� −
�g��

�X� �� + g��

�2X�

�X�� � X��

�X�

�X�� . �A7�

From Eq. �26�, we also have

� f���

�X�� =
� f��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + f��

�2X�

�X�� � X��

�X�

�X�� + f��

�2X�

�X�� � X��

�X�

�X�� ,

� f���

�X�� =
� f��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + f��

�2X�

�X�� � X��

�X�

�X�� + f��

�2X�

�X�� � X��

�X�

�X�� . �A8�

Taking into account Eqs. �22� and �29�, we find

X��X��
� f���

�X�� = X�X�� f��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + X�X�f��

�2X�

�X�� � X��

�X�

�X�� ,

X��X��
� f���

�X�� = X�X�� f��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + X�X�f��

�2X�

�X�� � X��

�X�

�X�� , �A9�

from which we obtain

1

2��
X��X��� � f���

�X�� +
� f���

�X��� =
�X�

�X��

�X�

�X��

�X�

�X��� 1

2�
X�X�� � f��

�X� +
� f��

�X� �� +
1

�
X�X�f��

�2X�

�X�� � X��

�X�

�X�� . �A10�

Let us now reconsider the transformations of the following quantities:

�g���

�X�� =
�g��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + g��

�2X�

�X�� � X��

�X�

�X�� + g��

�2X�

�X�� � X��

�X�

�X�� ,

�g���

�X�� =
�g��

�X�

�X�

�X��

�X�

�X��

�X�

�X�� + g��

�2X�

�X�� � X��

�X�

�X�� + g��

�2X�

�X�� � X��

�X�

�X�� . �A11�

From these equations, we obtain

X��
�g���

�X�� + X��
�g���

�X�� = �X��g��

�X� +
�g��

�X� � �X�

�X��

�X�

�X��

�X�

�X�� + 2X�

�2X�

�X�� � X�� , �A12�

where Eq. �29� has been taken into account. From Eq. �A12� we finally obtain

1

2��
�X��� �g���

�X�� +
�g���

�X���� f��� X�� =
1

2�
�X�� �g��

�X� +
�g��

�X� �� f��X
�

�X�

�X��

�X�

�X��

�X�

�X�� +
1

�
X�X�f��

�2X�

�X�� � X��

�X�

�X�� . �A13�

Summing Eq. �A7� with Eqs. �A10� and �A13�, it follows that:
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Ň���� = Ň��
� �X��

�X�

�X�

�X��

�X�

�X�� +
�X��

�X�

�2X�

�X�� � X�� , �A14�

where

Ň��
� = Ň��g��� �

��

 +

Ň��X�X�

2�
� � f��

�X� +
� f��

�X� �
+

Ň��f��X
�X�

2�
� �g��

�X� +
�g��

�X� � �A15�

and

Ň��N�� = ��
� with N�� = g�� +

1

�
f��X�X� +

1

�
f��X�X�.

�A16�

Summing again Eq. �A15� with Eq. �A1� and the first equa-
tion of Eq. �A4�, we finally obtain

����� = ���
� �X��

�X�

�X�

�X��

�X�

�X�� +
�X��

�X�

�2X�

�X�� � X�� , �A17�

where

���
� = �̌��

� +
Ň��

2�
X�O�g��� + ��

��� + ��
���. �A18�

It is not difficult to prove that the affine connection �57�
satisfies the postulates �1�–�3�. Indeed, if A� indicates a ther-
modynamic vector, we have

A�� = A��X��

�X� . �A19�

Deriving this equation, with respect to parameter �, we ob-
tain

dA��

d�
=

dA�

d�

�X��

�X� + A� �2X��

�X� � X�

dX�

d�
. �A20�

Taking into account the following identities:

�2X��

�X� � X� = −
�X��

�X�

�X��

�X�

�2X�

�X� � X�� =

−
�X��

�X�

�X��

�X�

�X��

�X�

�2X�

�X�� � X�� �A21�

and Eq. �A17�, we find

�A��

��
=

�A�

��

�X��

�X� . �A22�

The validity of postulates �2� and �3� is immediately verified,
by direct computation, using Eqs. �34� and �37�. The validity
of these postulates was shown above for a thermodynamic
vector. By a closely analogous procedure, it can be checked
that the postulated �1�–�3� are satisfied for any thermody-
namic tensor.

APPENDIX B: DERIVATION OF THE NONLINEAR
CLOSURE EQUATIONS FROM THE ACTION PRINCIPLE

In this appendix, the nonlinear closure equations by the
principle of the least action are derived. Let us rewrite Eq.
�64� as

I =� �R��g�� − ����
� − �̃��

� �S�
����gdnX , �B1�

where the expression of S�
�� is given by Eq. �63�. This action

is stationary by varying independently the transport coeffi-
cients �i.e., by varying, separately, g�� and f��� and the affine
connection ���

� . A variation with respect to ���
� reads as

�I� =� ��R��g�� − ����
� S�

����gdnX = 0. �B2�

By direct computation, we can check that

�R�� = �����
� �	� − �����

� �	�. �B3�

Defining K����gg��, we have the identities

�K������
� �	� = K	�

������
� + K������	�

� ,

�K������
� �	� = K	�

������
� + K�������	�. �B4�

Equation �B2� can be rewritten as

�I� =� �K������
� �	�dnX −� K	�

������
� dnX +� K	�

������
� dnX

−� �K������
� �	�dnX −� S�

������
� �gdnX = 0. �B5�

The thermodynamic covariant derivative of the metric tensor
reads as

g��	� = g��,� − ���
� g�� − ���

� g��, �B6�

from which we find

���
� = −

1

2
g��g��	� +

1

2
g��g��,�. �B7�

Taking into account that ��g=1 /2�gg���g��, Eq. �B7� can
also be brought into the form

���
� −

1
�g

�g,� +
1
�g

�g	� = 0. �B8�

On the other hand, we can easily check the validity of the
following identities:

�K������
� �	� = �K������

� �,�

+ ����
� −

1
�g

�g,� +
1
�g

�g	��K������
� ,
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�K������
� �	� = �K������

� �,�

+ ����
� −

1
�g

�g,� +
1
�g

�g	��K������
� .

�B9�

Therefore, from Eq. �B8�, the terms

� �K������
� �	�dnX, � �K������

� �	�dnX �B10�

drop out when we integrate over all thermodynamic space.
Equation �B5� reduces then to

�I� = −� K	�
������

� dnX +� K	�
������

� dnX

−� S�
������

� �gdnX = 0. �B11�

It is seen that �I� vanishes for general variation of ����
� if,

and only if,

−
1

2
K	�

����
� −

1

2
K	�

����
� + K	�

�� − S�
���g = 0. �B12�

Contracting indexes � with �, we find

K	�
�� − ���

� g���g = 0, �B13�

where Eq. �63� has been taken into account. Thanks to Eq.
�B13�, Eq. �B12� becomes

K	�
�� = ���

� g���g + ���
� g���g . �B14�

From the identity �g��=−g��g���g��, we also have

K	�
�� = �g	�g�� + �gg	�

�� =
1

2
�gg��g��g��	� − �gg��g��g��	�.

�B15�

Equation �B14� reads then

TABLE I. Comparison between the General Relativity and the
Thermodynamic Field Theory Geometries.

General relativity TFT

Geometry Pseudo-Riemannian Non-Riemannian

Field Symmetric Asymmetric

Metric
Minkowski �3+1�
signature Positive definite

Space Pseudo-Riemannian
Thermodynamic
space

Covariance

General
covariance
principle

Homogeneous functions
of first degree

Equivalence
principle Satisfied Not satisfied

Universal criterion
of evolution Not satisfied Satisfied

Main invariant Proper time Entropy production

���
�

Levi-Civita’s
connection

New thermodynamic
affine connection

R���
�

Riemannian’s
tensor

New thermodynamic
curvature tensor

R�� Ricci’s tensor
New thermodynamic
tensor

R��−1 /2g��R Einstein’s tensor
New thermodynamic
tensor

TABLE II. Descriptions of terms appearing in the
manuscript.

Term Description

TCT
X��=X1F�� X2

X1 , X3

X2 , ¯ Xn

Xn−1 �,
where F� are arbitrary functions

Covariant
thermodynamic
vector A�

A set of quantities transforming,
under TCT, as A��= �X��

�X� A�

Contravariant
thermodynamic
vector A�

A set of quantities transforming,
under TCT, as A�� = �X�

�X�� A�

Parallel transport
Moving a vector along a curve
without changing its direction

Affine connection A rule for parallel transport

Manifold
A set of points, which has a
continuous 1−1 map onto a set of Rn

Differential
manifold

A manifold with some additional
structure allowing to do differential
calculus on the manifold.

Linear connection

A differential-geometric structure
on a differential manifold M
associated with an affine connection on
M, which satisfies the
transformation law �33�

Thermodynamic
affine connection ���

� The affine connection given in Eq. �57�

Tangent space

A real vector space, containing
all possible directions, attached to
every point of a differential manifold.

Riemannian
geometry

A geometry constructed out of a
symmetric positive-definite
second-rank tensor

Riemannian
manifold

A real differential manifold in
which each tangent space is equipped
with an inner product, which varies
smoothly from point to point.
The metric is a positive-definite
metric tensor

Riemannian space

A space equipped with a positive-definite
metric tensor and with the
Levi-Civita connection.

Non-Riemannian
geometry

A geometry constructed out of the
components of the affine connections

Thermodynamic
space

A space equipped with g�� as metric
tensor and with the single affine
connection given in Eq. �57�
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− g��g��g��	� +
1

2
g��g��	�g�� = ���

� g�� + ���
� g��.

�B16�

Contracting this equation with g��, we find, for n�2

g��g��	� = 0, �B17�

where Eq. �61� has been taken into account. Equation �B16�
is simplified as

− g��g��g��	� = ���
� g�� + ���

� g��. �B18�

Contracting again Eq. �B18� with g��g��, we finally obtain

g��	� = − ���
� g�� − ���

� g��. �B19�

The first two equations in Eq. �65� are straightforwardly ob-

tained considering that from Eq. �B19� we derive ���
� − �̃��

�

=0 �see Sec. II�.

APPENDIX C: COMPARISON BETWEEN THE GENERAL
RELATIVITY AND THE THERMODYNAMIC

FIELD THEORY GEOMETRIES

Although the mathematical symbols are similar, the ge-
ometries of the general relativity and of the TFT are quite

different. Above all, in the former case, the geometry is
pseudo-Riemannian whereas in the latter is non-Riemannian.
The principle of general covariance respected in the general
relativity is not satisfied in the TFT. In addition, the equiva-
lence principle is not respected in the TFT. On the contrary,
the universal criterion of evolution is satisfied only in the
TFT. In the TFT, symbol R���

� should not be confused with
the Riemannian curvature tensor and the curvature scalar is
defined to as the contraction between the R�� thermodynam-
ictensor �which does not coincide with Ricci’s tensor� and
the symmetric piece of the transport coefficients �see also
Ref. �21��. In this paper, it is mentioned that in case of �but
only in this case� the dimensionless entropy production is
much greater than unity then the space tends to be Riemann-
ian. However, also in this limit case, a comparison with the
general relativity geometry is not appropriate. Table I should
help to avoid any possibility of confusion.

APPENDIX D: DESCRIPTIONS
OF THE MATHEMATICAL TERMS

For easy reference, we provide below Table II with
short descriptions of the terms appearing in this paper.
This should help to make more readable this paper and we
refer the reader to the specialized textbooks for rigorous defi-
nitions.
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